Numerical methods for hyperbolic systems with singular coefficients: well-balanced scheme, Hamiltonian preservation, and beyond

نویسندگان

  • Shi Jin
  • SHI JIN
چکیده

This paper reviews some recent numerical methods for hyperbolic equations with singular (discontinuous or measure-valued) coefficients. Such problems arise in wave propagation through interfaces or barriers, or nonlinear waves through singular geometries. The connection between the well-balanced schemes for shallow-water equations with discontinuous bottom topography and the Hamiltonian preserving schemes for Liouville equations with discontinuous Hamiltonians is illustrated. Various developments of numerical methods with applications in high frequency waves through interfaces, and in multiscale coupling between classical and quantum mechanics, are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamiltonian-preserving schemes for the Liouville equation with discontinuous potentials

When numerically solving the Liouville equation with a discontinuous potential, one faces the problem of selecting a unique, physically relevant solution across the potential barrier, and the problem of a severe time step constraint due to the CFL condition. In this paper, We introduce two classes of Hamiltonian-preserving schemes for such problems. By using the constant Hamiltonian across the ...

متن کامل

Hamiltonian-preserving schemes for the Liouville equation of geometrical optics with discontinuous local wave speeds

In this paper, we construct two classes of Hamiltonian-preserving numerical schemes for a Liouville equation with discontinuous local wave speed. This equation arises in the phase space description of geometrical optics, and has been the foundation of the recently developed level set methods for multivalued solution in geometrical optics. We extend our previous work in [S. Jin, X. Wen, Hamilton...

متن کامل

A Hamiltonian-preserving Scheme for High Frequency Elastic Waves in Heterogeneous Media

We develop a class of Hamiltonian-preserving numerical schemes for high frequency elastic waves in heterogeneous media. The approach is based on the high frequency approximation governed by the Liouville equations with singular coefficients due to material interfaces. As previously done by Jin and Wen [10,12], we build into the numerical flux the wave scattering information at the interface, an...

متن کامل

Well-balanced bicharacteristic-based scheme for multilayer shallow water flows including wet/dry fronts

The aim of this paper is to present a new well-balanced finite volume scheme for two-dimensional multilayer shallow water flows including wet/dry fronts. The ideas, presented here for the two-layer model, can be generalized to a multilayer case in a straightforward way. The method developed here is constructed in the framework of the Finite Volume Evolution Galerkin (FVEG) schemes. The FVEG met...

متن کامل

Symplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects

In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008